
The Dark Side of NTFS (Microsoft’s Scarlet Letter) by H. Carvey on 10/10/02

Introduction

Microsoft platforms continue to proliferate and multiply. Corporate server and desktop systems are running
Windows NT (NT) and Windows 2000 (2K), while home user and student systems are running Windows XP
(XP). These platforms are extremely popular, and in widespread use. However, very little is known by the
administrators and users of these systems about a feature of the NTFS file system called 'alternate data
streams'.

NTFS is the preferred file system due to its stability, functionality, and the level of security it provides. NTFS
alternate data streams (ADSs) are provided for compatibility with the Macintosh Hierarchical File System
(HFS), which uses resource forks to maintain information associated with a file, such as icons, etc
(RUSS00). While Microsoft provides a means for creating specific ADSs via Windows Explorer, the
necessary tools and functionality for detecting the presence of arbitrary ADSs is conspicuously absent.
Oddly enough, the operating systems have the necessary native functionality and tools to allow a user to
create ADSs and to execute code hidden within those streams. Microsoft KnowledgeBase article Q101353
acknowledges the fact that the Win32 base API supports ADSs inconsistently.

The purpose of this paper is to describe in detail how ADSs are created and manipulated, and how code
hidden in ADSs can be executed. Specific differences in the treatment of ADSs by NT, 2K, and XP will be
noted.

Creating ADSs

The syntax used to create ADSs is relatively simple and straightforward. To create an ADS associated with
the file 'myfile.txt', simply separate the default stream name from the ADS name with a colon.

c:\ads>echo This is an ADS > myfile.txt:hidden

Additionally, an ADS can be created using the contents of another file.

c:\ads>echo This is a test file > test.txt

c:\ads>type test.txt > myfile.txt:hidden

The ADS can then be verified using Notepad.

c:\ads>notepad myfile.txt:hidden

However, none of the variations of the ‘dir’ command nor any available switches or settings for Windows
Explorer will detect the presence of this newly created ADS.

Additionally, ADSs can be created and associated with the directory listing, rather than a file. This
peculiarity will take on some significance later in this article, but for now it’s sufficient to describe how such
ADSs can be created.

c:\ads>echo This ADS is tied to the directory listing > :hidden

ADSs of this type can be created with Notepad and the ‘type’ command, as well.

The content of ADSs should not be considered limited to simply text data. Any stream of binary information
can constitute a file, and the ADS is nothing more than a file. Executables can be hidden in ADSs quite
easily.

c:\ads>type c:\winnt\notepad.exe > myfile.txt:np.exe

c:\ads>type c:\winnt\system32\sol.exe > myfile.txt:sol2.exe

Seite 1 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

Similarly, image files, audio files, or any other stream of data can be hidden in ADSs.

Finally, Windows Explorer provides a means by which very specific ADSs can be created (RUSS00). If the
user opens Explorer and chooses a file, and then right-clicks on that file, a drop-down menu appears.
Choosing 'Properties' will open a Properties dialogue, and choosing the Summary tab (see Fig. 1) will
reveal fields in which the user can insert information.

Figure 1: Summary Tab of Properties Dialogue

ADSs have no attributes of their own, per se. The access rights assigned to the default unnamed stream
control access for creating or viewing ADSs. Quite simply, if a user cannot write to a file, that user cannot
add an ADS to that file. Further, while Windows File Protection prevents the replacement of protected
system files, it does not prevent a user with the appropriate permissions from adding ADSs to those system
files. The System File Checker (sfc.exe) will verify that protected system files have not been overwritten, but
will not detect ADSs.

Users and administrators should also be aware of KB article Q319300 , which states that the Windows
2000 Content Indexing Server adds alternate data streams named '?Q30lsldxJoudresxAssqpcawXc' to
image files on NTFS volumes. These ADSs contain thumbnails of the images.

Detecting, Viewing, and Manipulating ADSs

As previously stated, Microsoft provides no tools or utilities either within the operating system software
distribution or the Resource Kits for detecting the presence of ADSs. One of the best tools available for this
is lads.exe, written by Frank Heyne . Lads.exe is currently available as version 3.01, and does an excellent
job of reporting the availability of ADSs. For administrators used to working with graphical tools, lads.exe is
a command line interface (CLI) tool that reports its findings to the screen (i.e., standard output or STDOUT).
Figure 2 shows an example lads.exe output, run against the test directory, c:\ads.

Seite 2 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

Figure 2: LADS Output for c:\ads

Figure 2 shows just how useful lads.exe can be. Not only does the utility report the presence of ADSs, but it
also reports the full path and size for each ADS. Particular note should be taken of the three of the ADSs
associated with myfile.txt. Two begin with an ASCII character resembling the spade from a playing card,
and the third is a long series of numbers and letters between two curly braces. These are the ADSs that
were associated with the file using the Summary tab of the Properties dialogue (fig. 1).

Once an ADS is detected, what can be done to view its contents? Notepad is a very handy utility for viewing
files, and can be used for viewing the contents of ADSs. However, there is a catch. For example, the
following command produces unexpected results:

c:\ads>notepad myfile.txt:hidden

When this command is executed, Notepad opens and asks if the user wishes to create a new file. This is an
unusual request, because the ADS was created earlier. In order to observe the expected results enter the
following commands:

c:\ads>echo This is another ADS > myfile.txt:hidden.txt

c:\ads>notepad myfile.txt:hidden.txt

The same effects can be observed when the ADS is associated the directory listing, as in ':hidden.txt'. The
addition of the extension on the end of the filename allows the ADS to be opened in Notepad. This will also
work for other ADSs, such as:

c:\ads>notepad myfile.txt:np.exe

ADSs are a feature of the NTFS file system, so if a file with an ADS is moved to a disparate file system,
such as FAT, FAT32, or ext2, the ADS is removed, as it is not supported on these other file systems. ADSs
are preserved if the default unnamed stream (i.e., myfile.txt from the previous examples) is copied or moved
across NTFS partitions, or even to a mapped NTFS drive. This can be accomplished using the ‘copy’ or
‘move’ commands, as appropriate.

Removing all ADSs from a default stream is relatively simple, using the following commands:

c:\ads>type myfile.txt > myfile.bat

Seite 3 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

c:\ads>del myfile.txt

c:\ads>ren myfile.bat myfile.txt

Using LADS, it is easy to verify that all ADS created in the above examples have vanished.

Executing ADSs

In previous examples, executables were hidden in ADSs. This information seems fairly useless unless the
executables themselves can be launched, without the overhead of having to copy them out of the ADS first.
In fact, the ‘start’ command can be used to do just that. Since the executables hidden earlier were deleted,
rerunning the commands will serve the purpose of an example. Using the ‘type’ command, hide Notepad
and Solitaire in ADSs associated with myfile.txt.

On NT, a simple command will launch either executable (MCCL99):

c:\ads>start myfile.txt:np.exe

c:\ads>start myfile.txt:sol2.exe

However, these commands generate an error on 2K. From the error message, it appears as if the
information pointing to the executable wasn’t sufficient. Therefore, either absolute or relative paths should
suffice, and running either of the following commands will demonstrate this:

c:\ads>start c:\ads\myfile.txt:np.exe

c:\ads>start .\myfile.txt:np.exe

An interesting item to note is how the process appears while running. For example, running pslist.exe from
SysInternals after executing either of the above two commands displays a process called 'myfile.txt' running
with a PID of 1512, as shown in figure 3.

Figure 3: Process listing using pslist.exe

Figure 4 shows the process running in the Process tab of the TaskManager.

Seite 4 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

Figure 4: Process Tab of 2K Task Manager

Oddly enough, the Process tab on 2K shows that PID 1512 has an Image Name of 'myfile.txt'. Figure 5
shows the Application tab of the Task Manager.

Seite 5 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

Figure 5: Applications Tab of 2K Task Manager

Figure 6 shows that the Process tab of the Task Manager on XP displays when the same command is
executed on that operating system.

Seite 6 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

Figure 6: Process Tab of XP Task Manager

Finally, obtaining information about the process with listdlls.exe from SysInternals will display
'c:\ads\myfile.txt:np.exe' as the command line for the above command (see fig. 7), on both 2K and XP.

Figure 7: Output of listdlls.exe on 2K

An alternative method for launching hidden executables on 2K is a shortcut (KASP01). To demonstrate the
point, create a shortcut on the desktop. The location of the item for this shortcut should be 'c:\ads\myfile.txt'.
Once the shortcut has been created, observe the icon on the desktop. Assuming the ADS for Solitaire was

Seite 7 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

created, edit the Properties of the shortcut so that the target now refers to 'c:\ads\myfile.txt:sol2.exe'. Wait a
few seconds and observe any changes to the icon. Launch the executable by double-clicking the icon.

Interestingly enough, as similar technique works by adding an entry to the Windows Startup Folder
(KASP01) or to the ‘Run’ key in the Registry (KASP01). The full path to the key is:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

Specifying the complete path to the hidden executable will guarantee that it is launched the next time the
system is started.

Yet another method for launching executables hidden in ADSs is via the ‘Run’ box in the Start menu
(KASP01). Clicking on the Start button, then 'Run', and typing the following command will launch the
Solitaire ADS:

file:///c:/ads/myfile.txt:sol2.exe

For administrators using Perl , the Perl interpreter handles ADSs quite easily. For example, the following
lines of Perl code make use of backticks to launch an ADS:

my $file = 'c:\ads\myfile.txt:sol2.exe';

`$file`;

Save the above code as ‘ads.pl’, and execute the code by typing:

c:\perl>ads.pl

As an interesting variation, the following code also works:

c:\perl>type ads.pl > myfile.txt:ads.pl

c:\perl>perl myfile.txt:ads.pl

The Windows Scripting Host (WSH) began shipping with 2K and presents some interesting possibilities with
regards to ADSs (KASP01). This is particularly important because WSH is native to the 2K and XP
distributions, while Perl must be installed separately. To demonstrate the capabilities of WSH, type the
following command:

c:\ads>echo MsgBox 'VBS file to test ADSs' > ads.vbs

To execute the script using WSH, type:

c:\ads>wscript ads.vbs

Alternatively, type:

c:\ads>cscript ads.vbs

Or, simply double-click the file in Windows Explorer. All three of these methods will run the VBScript code.
Now type the following commands:

c:\ads>type ads.vbs > myfile.txt:ads.vbs

c:\ads>wscript myfile.txt:ads.vbs

Or:

Seite 8 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

c:\ads>start .\myfile.txt:ads.vbs

Cscript.exe also runs the script. Alternatively, the shortcut and Run box methods mentioned above also run
the script (KASP01).

The Really, Really Dark Side

If the script hidden in an ADS ends with a different extension (i.e., other than '.vbs'), WSH has trouble
recognizing the type of file, and will complain that an engine for executing the file cannot be found. For
example:

c:\ads>type ads.vbs > myfile.txt:ads.txt

c:\ads>wscript myfile.txt:ads.txt

Executing the second command above results in the error described. However, both wscript.exe and
cscript.exe have switches that allow the administrator to control the execution of the program. The
command syntax can be seen by typing:

c:\ads>wscript /?

The '//E' switch allows the user to specify an engine to be used. The new command looks like:

c:\ads>wscript //E:vbs myfile.txt:ads.txt

This provides some interesting opportunities for malicious use. For example, the earlier example of ADSs
produced via Windows Explorer (i.e., the Summary tab of the Properties dialogue for a file) produced on
ADS with the name '

�
SummaryInformation'. Code, such as VBScript, can be created and written to an ADS

with the same name, and then launched. The following Perl code illustrates this:

my $file = 'c:\\ads\\myfile.txt:'.chr(5).'SummaryInformation';

my $src = 'c:\ads\ads.vbs';

`type $src > $file`;

`wscript //E:vbs $file`;

The final command in the script is the one of interest. For both wscript.exe and cscript.exe, the '//E' switch
forces the application to use a particular script engine. In this case, the ADS containing the script to be
launched has no file extension, so the scripting host has no means for determining the scripting engine to
be used. This example could also apply quite easily to ADSs created by the Content Indexing Server, as
mentioned above.

Conclusion

ADSs are a feature of the NTFS file system intended to provide compatibility with HFS, which may still be
necessary for compatibility. However, the lack of visibility of this 'feature' poses a significant risk for
administrators. There has already been one virus released that employed ADSs, W2K.Stream written by
Bennie and Ratter of the group 29A (KASP01). As the release of malware and incidents of cybercrime
increase, the malicious use of ADSs will likely increase as well.

The solution is not to stop using the NTFS file system, as the benefits in security and reliability are too
great. This 'feature' has remained part of the file system since NT 3.1. Given the circumstances, a far more
prudent solution would have been to include support for HFS files in the File and Print Services for the
Macintosh, rather than the file system. As it is, administrators should make judicious use of discretionary
access control lists (DACLs) on files and directories (CARV00), and regularly scan their critical systems

Seite 9 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

using utilities such as lads.exe. In addition, Microsoft should be lobbied to add the ability to detect and view
ADSs to Windows Explorer and the command interpreter. A more than appropriate measure would be to
have ADSs appear in Windows Explorer by default, using an icon with a scarlet 'A' to signify an ADS.
Additionally, Microsoft should provide restrictions within the operating system for creating processes from
executable files whose names contain a colon.

Further, antivirus software vendors should include support for ADSs within their products by default. While
many of the worms seen over the past year or more have been executables written in Visual Basic or
Delphi, others have been Visual Basic scripts. This malware has been capable of wreaking considerable
havoc, and all prudent steps should be taken to protect systems.

References

RUSS00 Russinovich, M., Inside Win2K NTFS, Part 2 , Windows 2000 Magazine, November, 2000

MCCL99 McClure, S., Scambray, J., and Kurtz, G., Hacking Exposed: Network Security Secrets and
Solutions, Berkeley: Osbourne, 1999

KASP01 Kaspersky, E. and Zenkin, D., NTFS Alternate Data Streams , Windows and .Net Magazine,
Spring 2001

CARV00 Carvey, H., Network Trojans: What You REALLY Need To Know , Information Security Bulletin,
Vol. 5, Issue 8

Seite 10 von 10Infosecwriters.com

01.03.2005http://www.infosecwriters.com/texts.php?op=display&id=53

